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1. INTRODUCTION

The Hermite—Fejér interpolatory polynomial, H,(f; x), of degree <(2n — 1
is defined by

H(f50) = 3 F0xeal = xxad (T — xi)?

where x;, = cos(Qk — 1)/2n) =, k = 1,2,...,n, are the zeros of the
Tchebychev polynomial T,(x) = cos(n arc cos x). Bojanic [1] has shown that,
for any continuous function f defined on [—1, 1],

I HLS5 ) — [l < (Cln) i w(f, 1/k), (LD

where || f]] = sup{| f(x)]: — 1 < x <1}, C is a constant, and «(f, 8) is
the modulus of continuity of fon [—1, 1].

Let {«,} be a sequence of positive numbers strictly increasing to co. For
any real runction f(¢) defined on (— o0, ), the extended Hermite-Fejér
operators are defined by

Hol f(ant): x[oy) = nl_zé Flaxn) (1 B x;c:n)( T (X otn) )2.

x/an — Xgn

Hsu [4] has shown that these extended Hermite-Fejér operators may be
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used to approximate continuous functions, f(x), of any order of growth
as | x | — oo. In this note we investigate the degree of approximation by the
extended Hermite—Fejér operators.

2. PRELIMINARIES
In the sequel let e,(x) = x* fork =0, 1, 2,....

LemMma 2.1. Let {L,} be a sequence of linear operators which are positive
(see [2] or [3]) on [—c,cl, 0 < ¢ < o0, with common domain D, and let
{a,} be a sequence of positive numbers strictly increasing to oo. Let
—wo<a<x<b<ow, feDNC(—cw,®), e,eD (({=0,1,2), and
L(eg; x) = 1. If there exists a number p > 1 and a positive increasing
Sfunction Q2 such that Q7€ D and f(t) = O&( t))(| t| — ), then, for
n>= M= M(x),

O — La(f(0a); x/00)] < 200(f, pa) -+ miz? | f(X)] po?
+ LA | £ )7; x)on) 7 m2 p3™,
where
(A/p) + Ufp) =1, m,=minfla—x|,1b—x1},
w(f; [a, b]; 8) = max{ f(u) — f@)): |p — v| < 8,p, v [a, B,
Yool = (@t — X% P = Pa(x) = [La(hns 5 X/t)]7%,

and C, is a constant depending only on f such that | f(t)] < C8( t|),
— 00 <t < 0.

Lemma 2.1 is the easy extension of [3, Theorem 2.2] to the whole real line.

LEMMA 2.2. Let {«,} be an increasing sequence of positive numbers. Let
£2 and its derivative §2' be positive increasing functions on (0, o). Then

| Ho (R0 103 5) — 200 x )| < 20 (280 02w

where C is Bojanic’s constant from (1.1).
Ifp > 1, we have

o (@ 1 03 25) = 201 x| = 209 (B a2@71(0) 2.
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Proof. Let g(x) = Q(a, | x|) for xe[—1,1]. Then by (1.1), for every
x€[—a,, a,l,

Qo |+ 1 xfte) — Q0 x D] < 1 Hol e |+ ) — Qe |+ Dl 1
<(Cln) Y wlg, 1/k)
k=1

and the proof is completed by showing that
w(g, h) < 2ha, 282 ().
For example, if | x| < h,|y| < hand |x —yp| < h <1, we have

| g(x) — g(W) < Qap | x ) — 200) + Len | ¥ ) — £2(0)
< 2(82(xh) — L2(0))
< 2ha, 2 ().

If|lhj<x<lwehavey=y—x+x>h—|x—y|>0andso

1 g(x) — g(M)| = | (apx) — Loy )l
<a?|x —y| Q(x,)
< ho‘nzg,(o‘n)’

and the remainder follows easily.

3. MAIN RESULTS

THEOREM 3.1. Let {a,} be a sequence of positive numbers strictly increasing
to 0 and —oo < a <x <b < w. Let fe C(— o0, o©) and suppose there
exist a number p > 1 and positive increasing functions 2, 2’ such that

F@x) = O0E( x ))(| x | — o).
Choose N = N(x) such that x € [—ay , ay). If n = N(x), then

| Hul f(nt); X[2t) — fO) < 200(f; an(2/m)'12) + miz? | f(x)] 20,272
+ Ci[27(1 x |) + 2Cp((1 + log n)/n) a, 227 ex,) 2 (ay) P17
X mz2" (2,20 )Y

where C is Bojanic’s constant, and p,p’, m, , o(f; [a, bl; 8) and C, are as
in Lemma 2.1.
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Proof. First, if 1,{t) = (a,t — x)?,

Hona0): Xfn) = 3 (e — X0 Ap(t/o)

k=1
S DY e [
If n = N(x) and x € [—ay , ay], then
—1 < x/a, <1 and 0 <1 — xpp(xfay) <2

Thus
Pu(X) = [Ho(hno(t); x[a)'? < an(2/n)*>.

Now it is easy to see that H,(e; ; x) = 1 and the Hermite-Fejér operators
are positive on [—1, 1]. The result now follows from Lemmas 2.1 and 2.2.
Denote

XD a(%) = expERP,x)  and  log(x) = log(log,).

Theorem 3.1 has an immediate application to a result of Hsu [4]:

THEOREM 3.2. For any continuous function f(x) defined on (— oo, o)
and satisfying the order condition f(x) = O(eXPmy | X |)(| x| > o0),

lim H,(f(2 10gm.o(n)); x/10gm.o(n)) = f(x)

almost uniformly on (— o0, o).

The rate of convergence in Theorem 3.2 is given by choosing «, =
log,.,s(n) in Theorem 3.1.

We call £2 a modulus of continuity on [0, o) if £ is continuous and non-
decreasing on [0, 0); £, + t,) < Q(r) + L2, for t;,1, > 0; Q) <
A+1DQ@) for At >0; Q0) =0; and (1/,) Q) < (2/t) () if
t, < t,. If £ is a modulus of continuity and M is a positive constant, let
Cy(82) = {f| fis continuous on (— oo, o) and | f(x) — f(¢) < M| x — t|)
for all x, t}. Let a > 0, {o,} be a positive sequence strictly increasing to o,
and || g|| = sup{| g(?)|: —a < t < a}. Define

E(H, 5 Col82); a5 @) = sup{l| Hu(f(eut); X/on) — f(): f€ Cu(€D)}.

The next result is an extension of Bojanic’s result {1] to the approximation
of functions unbounded on the real line.
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THEOREM 3.3. There exist constants K, , K, > O such that for any modulus
of continuity Q on [0, o) and positive sequence {x,} strictly increasing to o,
and all n > N(a, o)

Kliﬂf-ig(

k=1

) < E(Hy s Co(2); 20 50) < Kzt_/lélg (22).

%n
k

The proof of Theorem 3.3 follows the lines of [2, Theorem 7.11, pp. 232~
237], once we note the following lemma (compare with [2, Lemma 7.1,
p. 228].

LemMMA 3.4, Let Q2 be a modulus of continuity on [0, ov) and {«,} be a
positive sequence strictly increasing to co. If n > 2, then

Ty n—1
(mroa/) 2 dt < Y k2 Qank -+ 1) m)
k=1

oy /N

moy

< (8wa,/n) 17202(t) dt.

moy, /R
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