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1. INTRODUCTION

The Hermite-Fejer interpolatory polynomial, Hi!; x), of degree ~2n - 1
is defined by

n

HnC/; x) = L j(Xkn)(l - xXkn)(Tn(x)ln(x - Xkn»)2
k~l

where X kn = cos((2k - l)/2n) 1T, k = 1, 2,... , n, are the zeros of the
Tchebychev polynomial Tn(x) = cos(n arc cos x). Bojanic [1] has shown that,
for any continuous function! defined on [-1, 1],

n

II Hn(f; .) - !I\ ~ (C/n) L w(j, 11k),
k~l

(1.1)

where II!II = sup{1 j(x) [: - 1 ~ x ~ I}, C is a constant, and w(j, 8) is
the modulus of continuity of!on [- 1, 1].

Let {cxn } be a sequence of positive numbers strictly increasing to 00. For
any real runction jet) defined on (-00, (0), the extended Hermite-Fejer
operators are defined by

Hsu [4J has shown that these extended Hermite-Fejer operators may be
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used to approximate continuous functions, j(x), of any order of growth
as I x I ---+ 00. In this note we investigate the degree of approximation by the
extended Hermite-Fejer operators.

2. PRELIMINARIES

In the sequel let ek(x) = x k for k = 0, 1,2,....

LEMMA 2.1. Let {Ln} be a sequence of linear operators which are positive
(see [2] or [3]) on [-c, c], °< c < 00, with common domain D, and let
{cxn} be a sequence of positive numbers strictly increasing to 00. Let
-oo<a<x<b<oo, fEDnC(-oo,oo), e;ED (i=0,1,2), and
Ln(eo ; x) = I. If there exists a number p > 1 and a positive increasing
function Q such that QP E D and j(t) = O(Q(I t 1))(1 t I ---+ (0), then, for
n ~ M = M(x) ,

I j(x) - Ln(f(cxnt); xlCXn)I ~ 2w(.f, Pn) + m;2 I j(x)1 Pn2

where

(lIp) + (lIp') = 1, m" = min{1 a - x I, I b - x I},

w(.f; [a, b]; 0) = max{1 j(/1-) - j(v)l: 1/1- - v I ~ 0, /1-, v E [a, b]},

and C1 is a constant depending only on f such that Ij(t)1 ~ C1Q(1 t I),
-00 < t < 00.

Lemma 2.1 is the easy extension of [3, Theorem 2.2] to the whole real line.

LEMMA 2.2. Let {cxn} be an increasing sequence of positive numbers. Let
Q and its derivative Q' be positive increasing functions on (0, 00). Then

where Cis Bojanic's constant from (1.1).
/fp > 1, we have
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Proof Let g(x) = Q(cxn I x \) for XE [-1,1]. Then by (1.1), for every
x E [-cxn , cxn],

n

~ (Cjn) I w(g, l/k)
k=l

and the proof is completed by showing that

w(g, h) ~ 2hcxn2Q'(cxn).

For example, if I x I ~ h, 1Y 1~ h and I x - y 1~ h < 1, we have

Ig(x) - g(y)1 ~ Q(cxn I x I) - Q(O) + Q(cxn I y I) - Q(O)

~ 2(Q(cxnh) - Q(O»

~ 2hcxn2Q'(cxn).

If 1 h I < x ~ 1 we have y = y - x + x > h - I x - y 1 > 0 and so

Ig(x) - g(y)1 = IQ(cxnx) - Q(cxnY)1

~ cxn2
I x - Y 1 Q'(cxn)

~ hcxn2Q'(cxn),

and the remainder follows easily.

3. MAIN RESULTS

THEOREM 3.1. Let {cxn} be a sequence ofpositive numbers strictly increasing
to 00 and - 00 < a < x < b < 00. Let fE C(- 00, 00) and suppose there
exist a number p > 1 and positive increasing functions Q, Q' such that

j(x) = O(Q(I x 1»(1 x I~ 00).

Choose N = N(x) such that x E [-CXN , CXN]. Ifn ~ N(x), then

1 HnCj(cxnt); x/cxn) - j(x) 1 ~ 2w(j, cxn(2/n)1/2) + m;2 I j(x)1 2cxn2n-1

+ C1[Qp(! x I) + 2Cp((1 + log n)/n) cxn2QP-l(cxn) Q'(cxn)]1/p

X m;2/P'(2cxn2n-l)1/P'

where C is Bojanic's constant, and p, p', m x , w(f; [a, b]; S) and C1 are as
in Lemma 2.1.



172 EISENBERG AND WOOD

n

Hn(!{JnxCt); x/cxn) = I (CXnXkn - X)2 Akn(x/cxn)
k~l

If n ;? N(x) and x EO [-cxN , CXN], then

and

Thus

Now it is easy to see that Hn(eo ; x) == 1 and the Hermite-Fejer operators
are positive on [-1, 1]. The result now follows from Lemmas 2.1 and 2.2.
Denote

and

Theorem 3.1 has an immediate application to a result of Hsu [4]:

THEOREM 3.2. For any continuous function j(x) defined on (- 00, 00)

and satisfying the order condition j(x) = O(exPm+1 I x 1)(1 x I ->- 00),

lim Hn(f(t 10gm+2(n»; x/logm+2(n» = j(x)
n->w

almost uniformly on (- 00, 00).

The rate of convergence in Theorem 3.2 is given by choosing CXn =

logm+2(n) in Theorem 3.1.
We call Q a modulus of continuity on [0, 00) if Q is continuous and non

decreasing on [0, 00); Q(t1 + t2) ~ Q(t1) + Q(t2) for t1 , t2 > 0; Q(llt) ~
(A + 1) Q(t) for A, t > 0; Q(O) = 0; and 0/t2) Q(t2) ~ (2/t1) Q(t1) if
t1 < t2 • If Q is a modulus of continuity and M is a positive constant, let
CM(Q) = {ilfis continuous on (- 00, 00) and I j(x) - j(t)1 ~ MQ(I x - t I)
for all x, t}. Let a > 0, {cxn} be a positive sequence strictly increasing to 00,
and II g II = sup{1 g(t)l: -a ~ t ~ a}. Define

The next result is an extension of Bojanic's result [1] to the approximation
of functions unbounded on the real line.
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THEOREM 3.3. There exist constants K1 ,K2 > 0 such that for any modulus
of continuity Q on [0, (0) and positive sequence {an} strictly increasing to 00,

and all n ~ N(a, an)

The proof of Theorem 3.3 follows the lines of [2, Theorem 7.11, pp. 232
237], once we note the following lemma (compare with [2, Lemma 7.1,
p.228].

LEMMA 3.4. Let Q be a modulus of continuity on [0, (0) and {an} be a
positive sequence strictly increasing to 00. If n ~ 2, then

1T(Yn n-l

(7Tan/n) f t-2Q(t) dt ~ I k-2Q(ann-1(k + 1) 7T)
'Ttcxnln k=l

~ (87Tan/n) r~n t-2Q(t) dt.
1Trxn /n

ACKNOWLEDGMENT

The authors wish to thank the referee for several helpful suggestions.

REFERENCES

I. R. BOJANIC, "A Note on the Precision of Interpolation by Hermite-Fejer Polynomials,",
pp. 69-76, Proceedings of the Conference on the Constructive Theory of Functions,
Budapest, 1969.

2. R. A. DEVORE, "The Approximation of Continuous Functions by Positive Linear
Operators, Lecture Notes in Mathematics, Springer-Verlag, New York, 1972.

3. S. EISENBERG AND B. WOOD, On the order of approximation of unbounded functions
by positive linear operators, SIAM J. Numer. Anal. 9 (1972), 266-276.

4. C. Hsu, On a kind of extended Fejer-Hermite interpolation polynomials, Acta Math.
Acad. Sci. Hungar. 15 (1964), 325-328.


